GUESSING THE DIAMETER OF THE SUN IF THE DIAMETER OF EARTH $=1 \mathrm{INCH}$

Holding my thumb and finger about an inch apart I asked a group of middle school students, "If the diameter of the earth is this distance, guess how much larger or smaller the sun would be:
\qquad the size of a BB
_ the size of a softball
_the size of a basketball
__ the size of a circle who's diameter reaches from the floor to the ceiling ($9-10$ feet high)
\qquad a two-story high weather balloon (18-20 feet high)

There are no wrong answers because these are just guesses. We need more information to create a scale model. We will do that next.

USING PROPORTION TO MAKE A MODEL

After some discussion we decide that we need to know the actual diameters of the earth and the sun to create a scale model. Below are the approximate (\approx) sizes rounded to the nearest thousands in miles.
diameter of the earth $\approx 8,000$ miles
diameter of the sun $\approx 864,000$ miles
Using the information above, help the class discover ways of determining how big the sun would be if the earth is about the size of a ping pong ball (roughly one inch). Have students record their work and solution on the back.

One way of doing this would be to set up a proportion and solve by cross multiplication.

$$
\begin{aligned}
& \left.\frac{1 \text { inch }}{8000 \mathrm{mi}}=\frac{\mathrm{x} \text { inches }}{864,000 \mathrm{miles}} \quad \begin{array}{l}
\text { (and solve as } \\
\text { shown below) }
\end{array}\right] \\
& 8000 \mathrm{x}=864,000 \quad x=864,000 \div 8,000
\end{aligned}
$$

$x=108$ inches or 9 feet for the diameter of the sun which \approx the floor to ceiling model.

I then drew the partial circle on the whiteboard to the amazement of all assembled including myself

USING THE SAME SCALE COMPUTE
DIAMETERS OF PLANETS AND SUN WHERE $1 \mathrm{IN}=8000 \mathrm{MI}$
MODELS OF SIZES OF SOME OTHER PLANETS

PLANET	ACTUAL SIZE	MODEL SIZE
MERCURY	$3,000 \mathrm{miles}$ (mi.)	
VENUS, EARTH	$8,000 \mathrm{mi}$.	1 inch (in.)
JUPITER	$143,000 \mathrm{mi}$.	
SATURN	$75,000 \mathrm{mi}$.	
URANUS	$32,000 \mathrm{mi}$.	
OUR SUN	$864,000 \mathrm{mi}$.	108 in. or 9 feet

FINDING AND USING A SCALE WHERE THE PLANET SIZES CAN BE FIT ON THIS PAGE

The problem: getting the largest body or sun to fit on this page so that the smallest can also be seen.

The scale of $1 \mathrm{~mm}=8000 \mathrm{mi}$ has the model of the sun at 108 mm or 10.8 cm fit the page, but earth or anything smaller (Mercury) would be barely visible as a mm or the thickness of a dime.

The scale of $\mathbf{1 ~ m m}=\mathbf{4 0 0 0} \mathbf{~ m i}$ works better. The sun and even the smallest planets will fit on one page this size. Using that scale, fill in the chart. Then draw and label the planets and the sun on the back of this paper.

PLANET	ACTUAL SIZE	MODEL SIZE
MERCURY	3,000 miles (mi.)	
VENUS, EARTH	$8,000 \mathrm{mi}$.	1 inch (in.)
JUPITER	$143,000 \mathrm{mi}$.	
SATURN	$75,000 \mathrm{mi}$.	
URANUS	$32,000 \mathrm{mi}$.	
OUR SUN	$864,000 \mathrm{mi}$.	108 in. or 9 feet

Discussion of diameter, circle, and sphere needed. More on area and volume next. KEY HERE.

