Math Magic: Exploring Our Super-Machine

THE NUMBER OF HEART BEATS IN AN HOUR, A DAY, A YEAR, AND A LIFETIME
(Use a calculator and show what you entered or input)
The size of a large fist and weighing $1 / 2$ to $3 / 4$ of a pound, one of the most enduring and efficient machines is the human heart. On average the human heart beats 70 times a minute.

USEFUL FACTS TO KNOW:

there are 60 minutes in an hour there are 24 hours in a day there are 365.25 days in a year ${ }^{1}$ there are four quarts in a gallon

ANSWERS TO COMPUTE USING THE ABOVE:

1. Heart beats per hour is ________-_=
2. Heart beats per day is \qquad X \qquad
3. Heart beats Per year is \qquad x \qquad $=$
4. Give the word name for this number.
5. Heart beats/life is \qquad x $=$
${ }_{2}^{2}$ Give the word name for this number below.

HOW MUCH BLOOD THE HEART PUMPS PER HOUR, PER DAY, PER YEAR, PER LIFE
 (Use a calculator and show input and estimation on back.)

Each heart beat pumps out about 5.7 cc (5.7 cubic centimeters is about 6 sugar cubes) of blood per second. This is about 6 quarts each minute. In the

United States, the average life expectancy of persons living in California is about 81 years. (Red text $=$ corrections were made.)

ANSWERS TO COMPUTE USING THE ABOVE:

(Use a calculator and show what you entered or input)
6. How many gallons does the heart pump a minute?
\qquad \div \qquad $=$ \qquad $\mathrm{gal} / \mathrm{min}$.
7. How many gallons per hour? \qquad x \qquad $=$
\qquad $\mathrm{gal} / \mathrm{hr}$
8. How many gallons per day? \qquad x $=$ gal/day/ Now write its word name
9. How many gallons per year? \qquad x \qquad $=$ $\begin{array}{lllcr} & & \text { Now write its word name } \\ \mathrm{b} & \mathrm{e} & \mathrm{l} & \mathrm{o} & \mathrm{w}\end{array}$
10. How many gallons per life? \qquad x
\qquad $=$ \qquad gal/life and write its word name below.

BUILDING A MODEL TO SEE HOW MUCH BLOOD THE HEART PUMPS OVER 80+ YRS

According to several online sources, there are 660,430 gallons in an olympic sized swimming pool.

From your answer above and this new information, what part of or how many olympic-sized swimming pools would be filled by the pumping of a heart over 81 years? (This will truly amaze you as it did me.)
\qquad \approx
pool(s) filled. ANSWERS

[^0]
[^0]: ${ }^{1}$ It takes the earth 365.25 days to go around the sun, but we round down to 365 and catch up on leap year
 ${ }^{2}$ NOTE: some calculators cannot fit this answer but show it with a decimal and an E. The E stands exponent of 8 so move the decimal point to the right 8 places. See scientific notation for a better explanation on Kahn Academy.

